Atomic Modeling of the $\delta \Leftrightarrow \varepsilon$ LiV₂O₅ Phase Transition and **Simulation of the XRD Powder Pattern Evolution**

Jean Galy,^{*,+1} Christine Satto,[†] Philippe Sciau,[†] and Patrice Millet⁺

**Institut fu*(*r Anorganische Chemie, Auf der Morgenstelle 18, D-72076 Tu*(*bingen, Germany; and* -*Centre d*+*Elaboration de Mate*&*riaux et d*+*Etudes Structurales, du Centre National de la Recherche Scienti*x*que, 29, rue Jeanne Marvig, BP 4347, 31055 Toulouse Cedex, France*

Received January 20, 1999; in revised form March 25, 1999; accepted April 8, 1999

 δ and ϵ LiV₂O₅ crystallize in the orthorhombic system, with *Cmcm* and *Pmmn* space groups, respectively. Transformation of δ into ε is initiated at about approximately 110 C . In both structures, lithium atoms are intercalated between $[V_2O_5]$ _n layers built up by $VO₅$ square pyramids sharing edges and corners, these layers being alternatively half shifted along the 3.6 Å parameter in the δ phase. Both crystal structures have been accurately depicted using *Pmn*21 space group with the short parameter along *c*. The phase transition, corresponding to a slip of $c/2$ of the alternate $[V_2O_5]_n$ layer of δ together with some lithiums, has been modeled step by step in order to be aligned along c , to finally match the ε structural organization. The shift vector *s* applied to *z* coordinates varies from $0 \le s \le 0.5$. The resulting evolution of the sequence of the computed X-ray powder pattern compares well with the experimental one done at ESRF $(\lambda = 0.64667)$. The joint structural modeling and X-ray patterns account for the $\delta \Leftrightarrow \varepsilon$ LiV₂O₅ phase transition. \circ 1999 Academic Press

INTRODUCTION

In a recent paper, the study of the thermal behavior of the δ LiV₂O₅ using an X-ray powder diffraction line set up at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, allowed us to specify clearly the remarkable series of phase transitions $\delta \Leftrightarrow \varepsilon \Rightarrow \gamma$ of this composi-tion of the lithium-vanadium oxide bronzes [\(1\)](#page-6-0).

The structural chemistry of the $Li_xV_2O_5$ system studied at 600° C was described by Galy *et al.* [\(2](#page-6-0)–[4\)](#page-7-0) as consisting of phases α , β , β' , and γ LiV₂O₅ (0 < *x* ≤ 1). Then, new phases were isolated by soft chemistry at room temperature by Whittingham *et al*. [\(5\),](#page-7-0) Murphy *et al*. [\(6\)](#page-7-0), and Dickens *et al*. [\(7\)](#page-7-0), i.e., α , ε , and δ LiV₂O₅. The α , ε , and δ structures (as well as β , β' and γ), feature a common parameter, \sim 3.6 Å, along the double chains of $[\text{VO}_5]$ square pyramids sharing edges, these chains being connected by corners to form single

layers, the second periodic length being approximately equal to 11.3 A**_** .

The α form could be roughly described as a low doping by lithium atoms in the layered structure of V_2O_5 ($x = 0.1$). The ε form exists for higher Li contents (0.33 \leq *x* \leq 0.64), with the α type structure, which is also the α' Na_xV₂O₅ one $(0.7 \le x \le 1)$ [\(8\)](#page-7-0). Lithium atoms occupy distorted bicapped triangular prisms between the $[V_2O_5]_n$ single layers. In fact, as demonstrated by Rozier *et al*. [\(9\),](#page-7-0) using joint XRD and $\mathrm{^6Li}$, $\mathrm{^7Li}$ MAS NMR techniques, the ε structure corresponds to two phases of limited solubility ranges ε 1 (0.33 \leq *x* \leq 0.47) and ε 2 (0.53 \leq *x* \leq 0.63) and a biphasic region ε 1 + ε 2 $(0.47 < x < 0.53)$. In ϵ 2, the cell parameter *a*, which corresponds to the periodicity of the $[V_2O_5]_n$ layer (around 11.3 A**_**), markedly drops to e1 and causes a small distortion. ε 1 and ε 2 have incommensurate modulated structures [\(9,10\).](#page-7-0) ε 1 is described in the orthorhombic and ε 2 in the monoclinic systems.

The remaining δ Li_xV₂O₅ phase (0.88 \leq *x* \leq 1) crystal lizes in the orthorhombic system with an original structure, as demonstrated by Cava *et al*. [\(11\)](#page-7-0) in neutron powder diffraction experiments and more recently by Millet *et al.* [\(12\)](#page-7-0) using X-ray data, together with the isostructural $MgV₂O₅$ compound.

This paper describes the modeling of atomic movements occurring during the $\delta \Leftrightarrow \varepsilon$ transition and the simulation of the continuous evolution of the corresponding X-ray powder patterns. As a result more insights are obtained at the atomic level into the experimental results provided by the ESRF experiment.

δ AND *ε* LiV₂O₅ STRUCTURES

These structures have already been described elsewhere $(1, 11, 12)$ $(1, 11, 12)$ and are only briefly recalled. Orthorhombic δ and ε structures show a similar short parameter, i.e., \sim 3.6 Å, the $[V_2O_5]_n$ layers being almost identical with a smooth variation of their μ puckering angles, 11.3° and 7.1°,

¹To whom all correspondence should be addressed.

respectively, along the longest parameter \sim 11.3 Å (δ : *Cmcm*, $a = 3.6047(2)$, $b = 9.9157(5)$, $c = 11.2479(4)$ Å at 21[°]C [\(12\);](#page-7-0) ε : *Pmmn*, $a = 11.3552(6)$, $b = 3.5732(2)$, $c =$ 4.6548 (3) Å at 140[°]C [\(1\)\)](#page-6-0).

A schematic of their projections along the short \sim 3.6 Å axis is shown in Fig. 1. The computed X-ray powder patterns for Cu*K*a radiation are plotted in [Figs. 2a](#page-2-0) and [2b](#page-2-0), for the δ and ε phases, respectively, using the structural data from Refs. [\(12\)](#page-7-0) and [\(1\).](#page-6-0) The parameters *a* and *c* of the δ phase have been permuted, while *b* and *c* of the *e* phase were multiplied by 2.

When the amount of lithium atoms exceeds the bound limit of the ϵ 2 phase domain ($x > 0.64$) there exists a shift of \sim 3.6/2 Å of alternate layers in the direction of the shortest parameter, leading to a doubling of parameter *b* perpendicular to the $[V_2O_5]_n$ layers in the δ phase.

In the δ and ε phases, the lithiums exhibit a drastic variation of their oxygenated coordination polyhedra, CN $4+2$, as a bicapped tetrahedron in the former and CN 6 + 2 as a bicapped triangular prism in the second.

$\delta \Leftrightarrow \varepsilon$ LiV₂O₅ PHASE TRANSITION

The $\delta \Leftrightarrow \varepsilon$ LiV₂O₅ phase transition occurs around 110^oC and ends around 130°C and the irreversible $\varepsilon \Leftrightarrow \gamma$ LiV₂O₅ transformation is initiated at around 175° C, ending at 235^oC (1). The $\delta \Leftrightarrow \varepsilon$ phase transition is reversible as shown by DSC measurements.

The shift of the $[V_2O_5]_n$ layers during formation of the δ phase, along the \sim 3.6 Å short axis, is obviously due to the "scratching" role of the inserted lithium atoms accompanying their intercalation process into the V_2O_5 layered structure. The increasing temperature reversibly promotes relaxation of the network with a readjustment of the $[V_2O_5]_n$ layers, i.e., reverse shift along the short axis, to yield the e form.

ATOMIC MODELING OF THE $\delta \Leftrightarrow \varepsilon$ LiV₂O₅ PHASE TRANSITION

The first task consisted in describing the δ and ϵ crystal structures using the same space group. Then these preliminary assumptions were checked by computing their corresponding powder patterns and comparing them with those derived from previous structure analyses [\(Fig. 2\)](#page-2-0) [\(1\).](#page-6-0)

 δ *LiV₂O₅*. This *Cmcm* crystal structure can be described with both space groups $Pmmn$ or $Pmn2_1$. The $Pmn2_1$ (No. 31) space group was chosen because it allows the $[V_2O_5]_n$ layers as well as the lithium atoms to be described independently.

FIG. 1. Ideal projections of δ and ε LiV₂O₅ phases onto the (001) plane together with the plotting of the *Pmn*2₁ space group.

TABLE 1 Coordinates of the Atoms in the Two $[V_2O_5]_n$ Layers, I and II, and the Lithiums, Li1 and Li2, Allowing δ and ϵ LiV₂O₅ Phases to be Described in the *Pmn*2₁ Space Group

δ LiV ₂ O ₅			ϵ LiV ₂ O ₅				
Atoms	$\mathbf x$	y	\overline{z}	Atoms	$\mathbf x$	y	\overline{z}
Layer I				Layer I			
Li1	Ω	0.6492	Ω	Li1	Ω	0.6400	Ω
V1	0.3513	0.5443	Ω	V1	0.3499	0.5566	Ω
O ₁₁	0.3772	0.7029	Ω	O11	0.3721	0.7330	θ
O ₂₁	0.1755	0.5051	Ω	O ₂₁	0.1740	0.5001	θ
O31	0.5	0.4692	Ω	O31	0.5	0.4858	θ
Layer II				Layer II			
Li2	Ω	0.1492	0.5	Li2	Ω	0.1400	Ω
V ₂	0.3513	0.0443	0.5	V ₂	0.3499	0.0566	Ω
O ₁₂	0.3772	0.2029	0.5	O ₁₂	0.3721	0.2330	Ω
O ₂₂	0.1755	0.0051	0.5	O ₂₂	0.1740	0.0010	Ω
O32	0.5	0.0308	0.5	O32	0.5	0.0142	θ

The sequence of cell parameters is $a = 11.2479(4)$, $b =$ 9.9157(5), $c = 3.6047(2)$ Å. In this case the number of atomic positions must be doubled to describe both $[V_2O_5]_n$ layers alternately shifted along [001].

Atomic positions are as follows:

Throughout computation, the thermal parameters $B(A^2)$ have been locked to average values close to experimental ones.

All parameters are listed in Table 1. The powder patterns (Cu*K*a radiation) computed in the real *Cmcm* structure and simulated in $Pmn2_1$ are compared in [Figs. 2a](#page-2-0) and [2c](#page-2-0) using the Kraus and Nolze program [\(13\)](#page-7-0).

 ϵ *LiV*₂O₅. This structure has already been determined in the space group *Pmmn* [\(12\).](#page-7-0) To describe it in the space group $Pmn2₁$ (No. 31), the cell parameters have just been permuted and parameter *b* doubled: $(a = 11.3552(6), b = 9.3096(3),$ $c = 3.5732(2)$ Å). Two identical layers are introduced whose atomic parameters are extrapolated from previous structure determinations (see Table 1):

[Figures 2b](#page-2-0) and [2d,](#page-2-0) computed for Cu*K*a radiation, show, like δ , the good agreement between ε powder patterns.

In [Fig. 1](#page-1-0) both structures are depicted along with the *Pmn*2 ¹ space group. By choosing the twofold helical axis along the [001] direction of the small parameter, rather than a perpendicular mirror plane, translation can easily be achieved step by step for this layer. We chose to set the *z* coordinates of the atoms describing layer I, as well as Li1, at $z = 0$; a shift of layer II was then computed along the [001] direction. If *s* stands for this shift, it is equal to $s = 0$ for the δ phase and 0.5 for the ε phase; thus the *z* coordinate of the atoms during the shift of layer II becomes $z = z_{\delta} - s$.

In the meantime, for each *s* value, the cell parameters have been adjusted, following the relations

$$
a(s) = 0.2146s + 11.2479 \quad b(s) = -1.2122s + 9.9157
$$

$$
c(s) = -0.063s + 3.6047
$$

and the atomic positions extrapolated from those in δ and ε . By way of example, a list of values for $s = 0.3$ is given in Table 2.

SIMULATION AND EVOLUTION OF THE XRD POWDER PATTERNS DURING THE $\delta \Leftrightarrow \varepsilon$ LiV₂O₅ PHASE TRANSITION

The recording wavelength of the powder patterns at ESRF was $\lambda = 0.64667$ Å. A simulation of both δ and ε in their most significant θ range, i.e., $5^{\circ} \le \theta \le 20^{\circ}$, is given in [Figs. 3a](#page-4-0) and [3b.](#page-4-0)

Successive patterns have been computed to increase values of *s* in steps of $\Delta s = 0.02$ within the range $0 \le s \le 0.5$. The evolution of patterns versus *s* is given in [Fig. 4](#page-5-0) using

TABLE 2 Intermediate Cell Parameters and Atom Coordinates after a Shift $s = 0.3$ of Layer II

	a(A) 11.3123	b(A) 9.5520	c(A) 3.5858		
Atom coordinates	$\mathbf x$	y	\overline{z}		
Layer I					
Li1	Ω	0.64368	θ		
V ₁	0.35046	0.55168	Ω		
O ₁₁	0.37414	0.72096	Ω		
O ₂₁	0.17460	0.50210	Ω		
O31	0.5	0.47916	θ		
Layer II					
Li2	Ω	0.14368	0.2		
V ₂	0.35046	0.05168	0.2		
O ₁₂	0.37414	0.22096	0.2		
O ₂₂	0.17460	0.00264	0.2		
O32	0.5	-0.02084	0.2		

FIG. 3. Powder pattern simulation of the δ and ε phases; $5^{\circ} \le \theta \le 20^{\circ}$ range and $\lambda = 0.64667 \text{ Å}$, a wavelength used at ESRF.

a program designed by Savariault [\(14\).](#page-7-0) It is in good agreement with the experimental data obtained at ESRF when the δ LiV₂O₅ powder transforms under heating in the ε phase.

For this simulation, the $\varepsilon \Rightarrow \gamma$ transformation occurring between 175 and 220 $^{\circ}$ C, has been added by introducing a progressive proportion of the γ phase to the detriment of ε [\(Fig. 4\).](#page-5-0)

 ε transformation into γ phase. Comparison with the experiment [1] shown in insert.

FIG. 5. Perspective view of two layers of both δ and ε structures allowing the lithium bonding to be observed and its coordination polyhedra after the $\delta \Leftrightarrow \varepsilon$ LiV₂O₅ phase transition.

DISCUSSION AND CONCLUSION

By using atomic modeling based on a crystallographic approach of both δ and ε , the structural dynamics of the transition has been thoroughly followed along with the resulting effects on the X-ray powder patterns. If the $[V_2O_5]_n$ layers move with a slight internal adjustment, the lithium atoms drastically alter their coordination scheme with oxygens from a bicapped tetrahedron to a bicapped triangular prism. This is shown in Fig. 5. During this displacement, lithium atoms are firmly bonded (four bonds: $2 \times Li-O3 = 2.026$ Å, the two O3 oxygens (corner shared SP) repeated along *c* and $2 \times Li-O2 = 2.436$ Å base oxygens O2 (edge shared SP) of the $VO₅$ square pyramids of the layer II; they evolve to $2 \times Li-O3 = 2.144$ Å and $2 \times Li-O2 =$ 2.348 Å, respectively, after the transformation is achieved. The bond distances to layer I, $2 \times Li-O1 = 2.014$ Å, are doubled but their length increase tremendously up to

 $4 \times Li-O1 = 2.634$ Å. Lithiums come closer to layer I, the space becoming larger with the creation of the bicapped triangular prism site. This results in better packing of layers (the *b* parameter perpendicular to the $[V_2O_5]_n$ layers decreases by approximately 0.6 Å after the $\delta \Leftrightarrow \varepsilon \text{ LiV}_2\text{O}_5$ phase transition.

ACKNOWLEDGMENTS

This paper is dedicated to the Alexander von Humboldt-Stiftung. J. Galy thanks Prof. Dr. J. Strähle for his warm and fruitful welcome in his laboratory at the University of Tübingen (Germany).

REFERENCES

- 1. C. Satto, Ph. Sciau, E. Dooryhee, J. Galy, and P. Millet, *J*. *Solid State Chem*. 146, 103 (1999).
- 2. J. Galy, J. Darriet, and P. Hagenmuller, *Rev*. *Chim*. *Miner*. 8, 509 (1971).
- 3. J. Galy, *J*. *Solid State Chem*. 100, 229 (1992).
- 4. P. Rozier, J. M. Savariault, and J. Galy, *Solid State Ionics* 98, 133 (1997).
- 5. M. S. Witthingham, *J*. *Electrochem*. *Soc*. 123, 315 (1976).
- 6. D. W. Murphy, P. A. Christian, F. J. Disalvo, and J. W. Wazczak, *Inorg*. *Chem*. 18, 2800 (1979).
- 7. P. G. Dickens, S. J. French, A. T. Hight, and M. F. Pye, *Mater*. *Res*. *Bull*. 14, 1295 (1979).
- 8. A. Carpy and J. Galy, *Acta Cryst*. *B* 31, 1481 (1975).
- 9. P. Rozier, J. M. Savariault, J. Galy, C. Marichal, J. Hirschinger, and P. Granger, *Eur*. *J*. *Solid State Inorg*. *Chem*. 33, 1 (1996).
- 10. J. M. Savariault, Ph. Sciau, and J. Galy, "Aperiodic'97, Proceeding of the International Conference on Aperiodic Crystals, France,'' 1997.
- 11. R. J. Cava, A. Santoro, D. W. Murphy, S. M. Zahurak, R. M. Fleming, P. Marsh, and R. S. Roth, *J*. *Solid State Chem*. 65, 63 (1986).
- 12. P. Millet, C. Satto, Ph. Sciau, and J. Galy, *J*. *Solid State Chem*. 136, 56 (1998).
- 13. W. Kraus and G. Nolze, PowderCell, FIMRST, Berlin, Germany, 1997.
- 14. J. M. Savariault, SAVATD program, CEMES, Toulouse, France, 1998.